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a b s t r a c t

RGB-Infrared (IR) person re-identification is very challenging due to the large cross-modality variations
between RGB and IR images. Considering no correspondence labels between every pair of RGB and IR
images, most methods try to alleviate the variations with set-level alignment by reducing marginal
distribution divergence between the entire RGB and IR sets. However, this set-level alignment strategy
may lead to misalignment of some instances, which limit the performance for RGB–IR Re-ID. Different
from existing methods, in this paper, we propose to generate cross-modality paired-images and
perform both global set-level and fine-grained instance-level alignments. Our proposed method enjoys
several merits. First, our method can perform set-level alignment by disentangling modality-specific
and modality-invariant features. Compared with conventional methods, ours can explicitly remove
the modality-specific features and the modality variation can be better reduced. Second, given cross-
modality unpaired-images of a person, our method can generate cross-modality paired images from
exchanged features. With them, we can directly perform instance-level alignment by minimizing
distances of every pair of images. Third, our method learns a latent manifold space. In the space,
we can random sample and generate lots of images of unseen classes. Training with those images,
the learned identity feature space is more smooth can generalize better when test. Finally, extensive
experimental results on two standard benchmarks demonstrate that the proposed model favorably
against state-of-the-art methods.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Person Re-Identification (Re-ID) (Gong, Cristani, Yan, & Loy,
2014; Zheng, Yang, & Hauptmann, 2016) is widely used in various
applications such as video surveillance, security and smart city.
Given a query image of a person, Re-ID aims to find images of
the person across disjoint cameras. It is very challenging due to
the large intra-class and small inter-class variations caused by
different poses, illuminations, views, and occlusions. To tackle
the above issue, lots of methods have been proposed, which can
be grouped into hand-crafted descriptors (Liao, Hu, Zhu, & Li,
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2015; Ma, Su, & Jurie, 2014; Yang, et al., 2014), metric learn-
ing (Koestinger, Hirzer, Wohlhart, Roth, & Bischof, 2012; Liao & Li,
2015; Zheng, Gong, & Xiang, 2013), and deep learning (Hermans,
Beyer, & Leibe, 2017; Schmidhuber, 2015; Sun, Zheng, Yang, Tian,
& Wang, 2018; Tavanaei, Ghodrati, Kheradpisheh, Masquelier, &
Maida, 2018; Zheng et al., 2016). Most of existing Re-ID methods
focus on visible cameras and RGB images, and formulate the
person Re-ID as a single-modality (RGB–RGB) matching problem.

However, the visible cameras are difficult in capturing valid
appearance information under poor illumination environments
(e.g. at night), which limits the applicability of person Re-ID in
practical. Fortunately, most surveillance cameras can automati-
cally switch from visible (RGB) to near-infrared (IR) mode, which
facilitates such cameras to work at night. Thus, it is necessary to
study the RGB–IR Re-ID in real-world scenarios, which is a cross-
modality matching problem. Compared with RGB–RGB single-
modality matching, RGB–IR cross-modality matching is more
difficult due to the large variation between the two modalities.
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Fig. 1. Illustration of set-level and instance-level alignment (please view in color). (a) There is a significant gap between the RGB and IR sets. (b) Existing methods
perform set-level alignment by minimizing distances between the two sets, which may lead to misalignment of some instances. (c) Our method first generates
cross-modality paired-images. (d) Then, instance-level alignment is performed by minimizing distances between each pair of images. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

As shown in Fig. 2(b), RGB and IR images are intrinsically distinct
and heterogeneous, and have different wavelength ranges. Here,
RGB images have three channels containing color information
of visible light, while IR images have one channel containing
information of invisible light. As a result, even human can hardly
recognize the person cross the two modalities.

The main challenge is modality-gap between RGB and IR im-
ages, making intra-class distance large. However, due to the lack
of correspondence labels between every pair of images in dif-
ferent modalities like in Fig. 2(a), existing RGB–IR Re-ID meth-
ods (Dai, Ji, Wang, Wu, & Huang, 2018; Hao, Wang, Li, & Gao,
2019; Wu, Zheng, Yu, Gong, & Lai, 2017; Ye, Lan, Li, & c Yuen,
2018a; Ye, Wang, Lan, & Yuen, 2018b) try to reduce the marginal
distribution divergence between RGB and IR modalities, while
cannot deal with their joint distributions. That is to say, as shown
in Fig. 1(b), they only focus on the global set-level alignment
between the entire RGB and IR sets while neglecting the fine-
grained instance-level alignment between every two images. This
may lead to misalignment of some instances when performing
the global alignment (Chen, Liu, Wang, Wassell, & Chetty, 2018).
Although we can alleviate this issue by using label information, in
Re-ID task, labels of training and test sets are unshared. Thus, sim-
ply fitting training labels may not perform very well for unseen
test labels.

Different from the existing approaches, a heuristic method
is to use cross-modality paired-images in Fig. 2(a). With the
paired images, we can directly reduce the instance-level gap by
minimizing the distance between every pair of images in a feature
space. However, as in Fig. 2(b), all images are un-paired in RGB–IR
Re-ID task. This is because the two kinds of images are captured at
different times. RGB images are captured at daytime while IR ones
at night. We can also translate images from one modality to the
other by using image translation models, such as CycleGAN (Zhu,
Park, Isola, & Efros, 2017) and StarGAN (Choi, et al., 2018). But
these image translation models can only learn one-to-one map-
pings, while mapping from IR to RGB images are one-to-many.
For example, gray in IR mode can be blue, yellow even red in RGB
mode. Under this situation, CycleGAN and StarGAN often generate
some noisy images and cannot be used for Re-ID task. As shown
in Fig. 2(d, e), the generated images by CycleGAN and StarGAN
are unsatisfying. Besides, those image translation methods (Choi,
et al., 2018; Zhu et al., 2017) use conditional generative models,
i.e. given an image from a IR mode, they can only generate one
image with RGB style. This kind of conditional generative models
cannot generate unseen ID and fails to enlarge the heterogeneous
datasets.

In this paper, we propose a novel framework, named Joint
Set-level and Instance-Level Alignment Re-ID (JSIA-ReID) which
enjoys several merits. (1) Our method can perform set-level align-
ment by disentangling modality-specific and modality-invariant
features. Compared with encoding images with only one encoder,
ours can explicitly remove the modality-specific features and
significantly reduce the modality-gap. (2) Given cross-modality
unpaired-images of a person, our method can generate cross-
modality paired-images. With them, we can perform instance-
level alignment by minimizing distance between the two images.
The instance-level alignment can reduce the modality-gap and
avoid misalignment of instances. (3) Our method can synthesize
lots of images of unseen IDs from random noise. This is important
for person ReID, a zero-shot image matching task. Because IDs
of training and test sets are unshared, ReID methods more easily
overfit training IDs. With those synthesized images of unseen ID,
better generalization can be obtained.

Specifically, as shown in Fig. 3, our framework consists of
three modules, i.e. a generation module G, a variation module V
and a feature alignment module F . G generates cross-modality
paired-images from unpaired-ones, V learns a continuous mani-
fold space, and F learns both set-level and instance-level aligned
features. The generation module G includes three encoders and
two generators. The three encoders disentangle a RGB(IR) image
to modality-invariant and RGB(IR) modalities-specific features.
Then, the RGB(IR) decoder takes a modality-invariant feature
from an IR(RGB) image and a modality-specific feature from an
IR(RGB) image as input. By decoding from the across-feature, we
can generate cross-modality paired-images as in Fig. 2(c). The
variation module V includes an encoder and a decoder, both of
which play the same roles as VAEs (Kingma & Welling, 2014).
The goal is to learn a low-dimensional continuous manifold space
for modality-invariant features. In the manifold feature space, we
can sample and decode lots of unseen and meaningful modality-
invariant features. Then, using the generation module G, we can
get more images of unseen IDs. In feature alignment module
F , we first utilize an encoder whose weights are shared with
modality-invariant encoder. It can map images from different
modalities into a shared feature space. Thus, set-level modality-
gap can be significantly reduced. Then, we further import an
encoder to refine the features to reduce the instance-level
modality-gap by minimizing distance between feature maps of
every pair of cross-modality images. Finally, by jointly train-
ing the generation module G, variation module V and feature
alignment module F with the re-id loss, we can learn both
modality-aligned, identity-discriminative and generalizable fea-
tures.
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Fig. 2. (a) In the edge-photo task, we can get cross-modality paired-images. By minimizing their distances in a feature space, we can easily reduce the cross-modality
gap. (b) In RGB–IR Re-ID task, we have only unpaired-images. The appearance variation caused by the cross-modality gap makes the task more challenging. (c) Our
method can well generate images paired with given ones, which help us to improve RGB–IR Re-ID. (d,e) Vanilla image translation models such as CycleGAN (Zhu
et al., 2017) and StarGAN (Choi, et al., 2018) fail to deal with this issue. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 3. Our proposed method consists of 4 steps. (a) Given cross-modality unpaired-images, generate cross-modality paired-images via the Generation Module.
(b) Given any two real images, generate images of unseen IDs using the Variation Module. (c) Instance-Level Feature Alignment using the generated cross-modality
paired-images from (a). (d) Discriminative Feature Learning using both seen IDs and unseen IDs from (b). Finally, all the four parts are jointly trained in an end-to-end
way.

The major contributions of this work can be summarized as
follows.

(1) We propose a novel method to generate cross-modality
paired-images by disentangling features and decoding from ex-
changed features. To the best of our knowledge, it is the first work
to generate cross-modality paired-images for the RGB–IR Re-ID
task.

(2) Our method can simultaneously and effectively reduce set-
level and instance-level modality-variation. The Instance-level
alignment can not only reduce modality-gap but also guarantees
identity-consistency of features.

(3) We propose a new variation module to map modality-
invariant features to a latent manifold feature space. With it, we
can sample and generate large-scale images of unseen IDs from
noise. Those new images help the learned identity feature space
more smooth and generalize better when test.

(4) We improve the instance-level alignment by applying local
features. This is based on our generated cross-modality paired-
images. Because our paired-images have absolutely same struc-
ture (views, poses), we can accurately reduce modality-gap of
local regions meanwhile avoiding noise.

(5) Extensive experimental results on two standard bench-
marks demonstrate that the proposed model performs against
state-of-the-art methods.

2. Related works

In this section, we briefly overview methods that are re-
lated to RGB–RGB person re-identification, RGB–IR person re-
identification and generative adversarial networks.

RGB–RGB Person Re-Identification. RGB–RGB person
re-identification addresses the problem of matching pedestrian
RGB images across disjoint visible cameras (Gong et al., 2014).
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Recently, many deep ReID methods (Hermans et al., 2017; Wang,
Yang, Cheng, Wang, & Hou, 2019b; Zheng et al., 2016) have
been proposed. The key challenges lie in the large intra-class
variation caused by different views, poses, illuminations, and
occlusions. Existing methods can be grouped into hand-crafted
descriptors (Liao et al., 2015; Ma et al., 2014; Yang, et al., 2014),
metric learning methods (Koestinger et al., 2012; Liao & Li, 2015;
Zheng et al., 2013) and deep learning algorithms (Hermans et al.,
2017; Sun et al., 2018; Zheng et al., 2016). The goal of hand-
crafted descriptors is to design robust features. For example, Ma
et al. (2014) handle the background and illumination variations
by combining biologically inspired features with covariance de-
scriptors. Yang, et al. (2014) explore color information by using
salient color names. In Liao et al. (2015), Liao et al. propose an
effective feature representation called local maximal occurrence,
which can analyze the horizontal occurrence of local features,
and maximize the occurrence to make a stable representation
against viewpoint changes. Metric learning methods are designed
to make a pair of true matches have a relatively smaller distance
than that of a wrong match pair in a discriminant manner. Zheng
et al. (2013) formulate person RE-ID as a relative distance com-
parison learning problem in order to learn the optimal similarity
measure between a pair of person images. The model is formu-
lated to maximize the likelihood of a pair of true matches having
a relatively smaller distance than that of a wrong match pair in a
soft discriminant manner. Deep learning algorithms adopt deep
neural networks to straightly learn robust and discriminative
features in an end-to-end manner. For example, Zheng et al.
(2016) learn identity-discriminative features by fine-tuning a pre-
trained CNN to minimize a classification loss. In Hermans et al.
(2017), Hermans et al. show that using a variant of the triplet loss
outperforms most other published methods by a large margin.
In Sun et al. (2018), a network named Part-based Convolutional
Baseline (PCB) is proposed to learn fine-grained part-level fea-
tures with a uniform partition strategy. Most of existing methods
focus on the RGB–RGB Re-ID task, and cannot perform well for
the RGB–IR Re-ID task, which limits the applicability in practical
surveillance scenarios.

RGB–IR Person Re-Identification. RGB–IR Person re-
identification attempts to match RGB and IR images of a person
under disjoint cameras. Besides the difficulties of RGB–RGB Re-
ID, RGB–IR Re-ID faces a new challenge due to cross-modality
variation between RGB and IR images. In Wu et al. (2017), Wu
et al. collect a cross-modality RGB–IR dataset named SYSU RGB–IR
Re-ID. The proposed method explores three different network
structures and uses deep zero-padding for training one-stream
network toward automatically evolving domain-specific nodes in
the network for cross-modality matching. In Wu et al. (2017), Wu
et al. collect a cross-modality RGB–IR dataset named SYSU RGB–IR
Re-ID and explores three different network structures with zero-
padding for automatically evolve domain-specific
nodes in the network. Ye et al. (2018a) propose a hierarchi-
cal cross-modality matching model by jointly optimizing the
modality-
specific and modality-shared metrics. The modality-specific
metrics transform two heterogeneous modalities into a consistent
space that modality-shared metric can be subsequently learnt.
In Ye et al. (2018b), a dual-path network is proposed with a
new bi-directional dual-constrained top-ranking loss to learn
discriminative feature representations. Ye et al. utilize a dual-
path network with a bi-directional dual-constrained top-ranking
loss (Ye et al., 2018a) and modality-specific and modality-shared
metrics (Ye et al., 2018b). In Dai et al. (2018), Dai et al. intro-
duce a cross-modality generative adversarial network (cmGAN)
to reduce the distribution divergence of RGB and IR features. Hao
et al. (2019) achieve visible thermal person re-identification via a

hyper-sphere manifold embedding model. In Wang, et al. (2019)
and Wang, Wang, Zheng, Chuang, and Satoh (2019a), they reduce
modality-gap in both image and feature domains. Most above
methods mainly focus on global set-level alignment between the
entire RGB and IR sets, which may lead to misalignment of some
instances. Different from them, our proposed method performs
both global set-level and fine-grained instance-level alignment,
and achieves better performance.

Person Re-Identification with GAN. Recently, many methods
attempt to utilize GAN to generate training samples for improv-
ing Re-ID. Zheng, Zheng, and Yang (2017) use a GAN model to
generate unlabeled images as data augmentation. Huang, et al.
(2018) first assign pseudo labels to generated pedestrian images
and then learn them in a supervision manner. Zhong, Zheng,
Luo, Li, and Yang (2019), Zhong, Zheng, Zheng, Li, and Yang
(2018b) and Zhong, Zheng, Li, and Yang (2018a) translate images
to different camera styles with CycleGAN (Zhu et al., 2017), and
then use both real and generated images to reduce inter-camera
variation. Ma et al. (Ma, et al., 2017, 2018) use a cGAN to gen-
erate pedestrian images with different poses to learn features
free of influences of pose variation. Zheng, et al. (2019) propose
joint learning framework that end-to-end couples re-id learning
and image generation in a unified network. All those methods
focus on single-modality RGB Re-ID and cannot deal with cross-
modality RGB–IR Re-ID. Different from them, our method can
generate cross-modality paired-images and learn both set-level
and instance-level aligned features.

Generative Models. Variational autoencoders (VAEs) (Kingma
& Welling, 2014) and generative adversarial networks (GANs)
(Goodfellow, et al., 2014) are the most popular generative models.
VAEs includes an encoder and a decoder network. The encoder
maps an input image to the latent variables which matches a
prior distribution, and the decoder samples images from the
latent variable. In this paper, we use VAEs idea to map features
to a latent manifold feature space for continuous and smooth
representation. GANs (Goodfellow, et al., 2014) learns data dis-
tribution in a self-supervised way via the adversarial training.
According to Huang, zhihang li, He, Sun, and Tan (2018), VAEs
have nice manifold representations, while GANs are better at
generating sharper images. GANs has been widely used in image
translation. Choi, et al. (2018), Isola, Zhu, Zhou, and Efros (2017)
and Zhu et al. (2017) and domain adaptation (Ganin, et al., 2016;
Hoffman, et al., 2018) Pix2Pix (Isola et al., 2017) solves the im-
age translation by utilizing a conditional generative adversarial
network and a reconstruction loss supervised by paired data.
CycleGAN (Zhu et al., 2017) and StarGAN (Choi, et al., 2018) learn
images translations with unpaired data using cycle-consistency
loss. In Zhu et al. (2017), with unpaired data, CycleGAN simul-
taneously learns two reciprocal image translations between two
domains and enforces the translated images to reconstruct their
original images. Further, StarGAN (Choi, et al., 2018) learns multi-
domain image translations by making the generator take both
images and domain labels as inputs, and improving the discrim-
inator to simultaneously distinguish image sources and classify
their domains. Those methods only learn one-to-one mapping
among different modalities and cannot be used in RGB–IR Re-ID,
where the mapping from IR to RGB is one-to-many. Different from
them, our method first disentangles images to modality-invariant
and modality-specific features, and then generates cross-modality
paired-images by decoding from exchanged features.

3. The proposed method

Our method includes a generation module G to generate cross-
modality paired-images and a feature alignment module F to
learn both global set-level and fine-grained instance-level aligned
features. Finally, by training the two modules with re-id loss,
we can learn both modality-aligned and identity-discriminative
features.
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3.1. Cross-modality paired-images generation module

As shown in Fig. 2(b), in RGB–IR task, the training images from
two modalities are unpaired, which makes it more difficult to
reduce the gap between the RGB and IR modalities. To solve the
problem, we propose to generate paired-images by disentangling
features and decoding from exchanged features. We suppose that
images can be decomposed to modality-invariant and modality-
specific features. Here, the former includes content information
such as pose, gender, clothing category and carrying, etc. Op-
positely, the latter has style information such as clothing/shoes
colors, texture, etc. Thus, given unpaired-images, by disentangling
and exchanging their style information, we can generate paired-
images, where the two images have the same content information
such as pose and view but with different style information such
as clothing colors.
Features Disentanglement. We disentangle features with three
encoders. The three encoders are the modality-invariant encoder
E i of learning content information from both modalities, the
RGB modality-specific encoder Es

rgb of learning RGB style infor-
mation, and the IR modality-specific encoder Es

ir of learning IR
style information. Given RGB images Xrgb and IR images Xir , their
modality-specific features Ms

rgb and Ms
ir can be learned in Eq. (2).

Similarly, their modality-invariant features M i
rgb and M i

ir can be
learned in Eq. (1).

Ms
rgb = Es

rgb(Xrgb), Ms
ir = Es

ir (Xir ) (1)

M i
rgb = E i(Xrgb), M i

ir = E i(Xir ) (2)

Paired-Images Generation. We generate paired-images using
two decoders including a RGB decoder Drgb of generating RGB
images and an IR decoder Dir of generating IR images. After get-
ting the disentangled features in Eqs. (1) and (2), we can generate
paired-images by exchanging their style information. Specifically,
to generate RGB images Xir2rgb paired with real IR images Xir , we
can use the content features M i

ir from the real IR images Xir and
the style features Ms

rgb from the real RGB images Xrgb. By doing so,
the generated images will contain content information from the
IR images and style information from the RGB image. Similarly,
we can also generate fake IR images Xrgb2ir paired with real RGB
images Xrgb. Note that to ensure that the generated images have
the same identities with their original ones, we only exchange
features intra-person. This processes can be formulated in Eq. (3).

Xir2rgb = Dir (M i
ir ,M

s
rgb), Xrgb2ir = Drgb(M i

rgb,M
s
ir ) (3)

Reconstruction Loss. A simple supervision is to force the disen-
tangled features to reconstruct their original images. Thus, we can
formulate the reconstruction loss Lrecon as below, where ∥ · ∥1 is
L1 distance.
Lrecon = ∥Xrgb − Drgb(E i(Xrgb), Es

rgb(Xrgb))∥1

+ ∥Xir − Dir (E i(Xir ), Es
ir (Xir ))∥1

(4)

Cycle-Consistency Loss. The reconstruction loss Lrecon in Eq. (4)
cannot supervise the cross-modality paired-images generation,
and the generated images may not contain the expired content
and style information. For example, when translating IR images
Xir to its RGB version Xir2rgb via Eq. (3), the translated images
Xir2rgb may not keep the poses (content information) from Xir , or
do not have the right clothing color (style information) with Xrgb.
This is not the case we want and will harm the feature learning
module. Inspired by CycleGAN (Zhu et al., 2017), we introduce
a cycle-consistency loss to guarantee that the generated images
can be translated back to their original version. By doing so, the
consistency loss further limits the space of the generated samples.
The cycle-consistency loss can be formulated as below:

Lcyc = ∥Xrgb − Xrgb2ir2rgb∥1 + ∥Xir − Xir2rgb2ir∥1 (5)

where Xir2rgb2ir and Xrgb2ir2rgb are the cycle-reconstructed images
as in Eq. (6).

Xir2rgb2ir = Dir (E i
rgb(Xir2rgb), Es

ir (Xrgb2ir ))

Xrgb2ir2rgb = Drgb(E i
ir (Xrgb2ir ), Es

rgb(Xir2rgb))
(6)

GAN loss. The reconstruction loss Lrecon and cycle-consistency
loss Lcyc lead to blurry images. To make the generated images
more realistic, we apply the adversarial loss (Goodfellow, et al.,
2014) on both modalities, which have been proved to be effective
in image generation tasks (Isola et al., 2017). Specifically, we im-
port two discriminators Disrgb and Disir to distinguish real images
from the generated ones on RGB and IR modalities, respectively.
In contrast, the encoders and decoders aim to make the generated
images indistinguishable. The GAN loss can be formulated as
below:
Lgan =E[logDisrgb(Xrgb) + log(1 − Disrgb(Xir2rgb))]

+E[logDisir (Xir ) + log(1 − Disir (Xrgb2ir ))]
(7)

Overall Loss. The overall loss of the cross-modality paired-images
generation module can be formulated as below:

LG
= Lrecon + λcycLcyc + λcycLgan (8)

3.2. Variation module

Although the generation module above generate cross-
modality paired-images by disentangling and exchanging fea-
tures, it cannot enlarge the heterogeneous ReID dataset. Given
an image from a modality, it only generates one image of the
other modality. The weakness becomes worse when training
data is limited. In this section, we propose a novel variation
module V to generate lots of cross-modality paired-images with
the same identity from random noise. The main idea is inspired
by VAEs (Kingma & Welling, 2014) to learn a low-dimensional
continuous manifold space for modality-invariant features. In
the manifold feature space, we can sample and decode lots of
unseen and meaningful modality-invariant features. Then, using
the cross-modality paired-images generation module, we can
generate more paired-images and further enhance ReID features.
Different from VAEs which deal with images, ours takes feature
map as input and is joined trained with our generation module.
Latent Space Learning. As shown in Fig. 3, the variation module
consist of an encoder Ev and a decoder Dv . The encoder Ev maps
modality-invariant feature maps M i from Eq. (1) to a latent space
z by a reparameterization trick: z = u+τ ·ϵ, where u = Ev

u (M) and
τ = Ev

τ (M) denote mean and standard deviation of feature maps,
respectively. The decoder Dv takes z as input and reconstruct
corresponding feature map.

z = Ev(M), Mrcon
= Dv(z) (9)

Reconstruction and Distribution Loss. This module includes two
losses, they are reconstruction loss and distribution loss. The
former guarantees the decoder to be able to reconstruct input
feature maps M i from their latent features z. The latter makes
sure that latent features z satisfy multi-variant standard Gaussian
distributions. The losses are formulated in Eq. (10), where ∥ · ∥p
is p norm, p ∈ {1, 2}.

Lv
= Lv

recon + Lv
distri

= ∥M − Mrecon
∥1 + ∥µ∥2 + ∥τ − 1∥2

(10)

3.3. Feature alignment module

Set-Level (SL) Feature Alignment. To reduce the modality-gap,
most methods attempt to learn a shared feature-space for dif-
ferent modalities by using dual path (Ye et al., 2018a, 2018b),
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or GAN loss (Dai et al., 2018). However, those methods do not
explicitly remove the modality-specific information, which may
be encoded into the shared feature-space and harms the perfor-
mance (Chang, Wang, Peng, & Chiu, 2019). In our method, we
utilize a set-level encoder Esl to learn set-level aligned features.
The weights Esl are shared with the modality-invariant encoder
E i. As we can see, in the cross-modality paired-images generation
module, our modality-invariant encoder E i is trained to explicitly
remove modality-specific features. Thus, given images X from any
modality, we can learn their set-level aligned featuresM = Esl(X).
Instance-Level (IL) Feature Alignment. Even so, as we discuss
in the introduction, only performing global set-level alignment
between the entire RGB and IR sets may lead to misalignment
of some instances. To overcome this problem, we propose to
perform instance-level alignment by using the cross-modality
paired-images generated by the generation module. Specifically,
we first utilize instance-level encoder E il to map the set-level
aligned features M to a new feature space T , i.e. T = E il(M). Then,
based on the feature space T , we align every two cross-modality
paired-images by minimizing their Kullback–Leibler Divergence.
Thus, the loss of the instance-level feature alignment can be
formulated in Eq. (11).

Lil
= E(x1,x2)∈(Xir ,Xir2rgb)[KL(p1 ∥ p2)]
+ E(x1,x2)∈(Xrgb2ir ,Xrgb)[KL(p1 ∥ p2)]

(11)

where p1 = C(t1) and p2 = C(t2) are the predicted probabilities
of x1 and x2 on all identities, t1 and t2 are the features of x1 and x2
in the feature space T , C is a classifier implemented with a global
average pooling and a fully-connected layer.
Improving IL with Local Regions (LR). In cross-modality paired-
images, two images contain absolutely the same contents such
as poses, views. This allows us to finely align every local region
without worrying about importing noise. Following Sun et al.
(2018), we horizontally split feature maps T to n blocks {T i

}
n
i , and

then align every block as in Eq. (12), where pn = Cn(tn) are the
predicted probabilities, tn is the nth local feature of image x, Cn

is nth classifier, different classifiers do not share weights.

Lil+lr
=

1
n

n∑
i=1

E(x1,x2)∈(Xir ,Xir2rgb)[KL(p
n
1 ∥ pn2)]

+
1
n

n∑
i=1

E(x1,x2)∈(Xrgb2ir ,Xrgb)[KL(p
n
1 ∥ pn2)]

(12)

Identity-Discriminative Feature Learning. To overcome the
intra-modality variation, following Hermans et al. (2017) and
Zheng et al. (2016), we averagely pool the feature maps T in
instance-level aligned space T to corresponding feature vectors
V . Given real images X , we optimize their feature vectors V with
a classification loss Lcls of a classifier C and a triplet loss Ltriplet .

Lid
= Lcls + Ltriplet

= Ev∈V (−log p(v)) + Ev∈V [m − Dva,vp + Dva,vn ]+
(13)

where p(·) is the predicted probability predicted by the classifier
C that the input feature vector belongs to the ground-truth, va
and vp are a positive pair of feature vectors belonging to the
same person, va and vn are a negative pair of feature vectors
belonging to different persons, m is a margin parameter and
[x]+ = max(0, x), D is the L2 distance.
Enhancing Features with Unseen IDs (UI). Given any two images
x1 and x2 from the same modality, we first use the variation
module V to learn their features z1 and z2 in latent space, and
their modality-specific features ms

1 and ms
2. Then we mix their

latent and modality-specific features with a ratio α as below.

zmix = αz1 + (1 − α)z2, s.t. α ∈ [0, 1]
ms

mix = αms
1 + (1 − α)ms

2, s.t. α ∈ [0, 1]
(14)

Algorithm 1 Overview of Proposed Method
Input: (Train) Cross-Modality Unpaired-Images Xrgb and Xir . (Test)
Query and Gallery Images Xq and Xg .
Train:
1: Generate cross-modality paired-images (Xrgb, Xrgb2ir ) and (Xir ,

Xir2rgb) via Eq. (3)
2: Generate images of unseen IDs Xmix via Eq. (14)
3: Instance-Level Alignment using Paired-Images via Eq. (11)
4: Learn discriminative features with both seen and unseen IDs

via Eqs. (13) and (15)
5: Train the framework in an end-to-end way via Eq. (16)
Test:
1: Compute features of query and gallery images Vq and Vg via

Eq. (17)
2: Compute cosine similarities between Vq and Vg
3: Rank by sorting according to cosine similarities

Then, we can reconstruct the mixed modality-invariant feature
map mi

mix via Eq. (9). Finally, through Eq. (3), we can get a new
person image xmix which contain information from both x1 and
x2. We use classification loss to train xmix, whose ground truth
probability is αp1 + (1 − α)p2. Here, p1 and p2 are the predicted
probability of images x1 and x2.

Lui
= KL(pmix ∥ αp1 + (1 − α)p2) (15)

3.4. Overall objective function and test

The overall objective function of our method is formulated as
below:

L = Lg
+ Lv

+ Lid
+ λilLil

+ λlrLlr
+ λuiLui (16)

where λ∗ are weights of corresponding terms. They are decided
by cross-validation.

During the test stage, only feature learning module F is used.
Given query and gallery images Xq and Xg , we use the set-level
alignment encoder Esl and the instance-level encoder E il to extract
features as in Eq. (17). Then, compute cosine similarities of query
and gallery feature vectors Vq and Vg . Finally, the results are
returned via nearest neighbor search on the similarities.

Vq = E il(Esl(Xq)), Vg = E il(Esl(Xg )) (17)

4. Experiment

4.1. Dataset and evaluation protocol

Dataset. We evaluate our model on two standard benchmarks
including SYSU-MM01 and RegDB. (1) SYSU-MM01 (Wu et al.,
2017) is a popular RGB–IR Re-ID dataset, which includes 491
identities from 4 RGB cameras and 2 IR ones. The training set
contains 19,659 RGB images and 12,792 IR images of 395 persons
and the test set contains 96 persons. Following Wu et al. (2017),
there are two test modes, i.e. all-search mode and indoor-search
mode. For the all-search mode, all images are used. For the indoor-
search mode, only indoor images from 1st, 2nd, 3rd, 6th cameras
are used. For both modes, the single-shot and multi-shot settings
are adopted, where 1 or 10 images of a person are randomly
selected to form the gallery set. Both modes use IR images as
probe set and RGB images as gallery set. (2) RegDB (Nguyen,
Hong, Kim, & Park, 2017) contains 412 persons, where each
person has 10 images from a visible camera and 10 images from
a thermal camera.
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Table 1
Comparison with the state-of-the-arts on SYSU-MM01 dataset. The R1, R10, R20 denote Rank-1, Rank-10 and Rank-20 accuracies (%), respectively. The mAP denotes
mean average precision score (%).
Methods All-Search Indoor-Search

Single-Shot Multi-Shot Single-Shot Multi-Shot

R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP

HOG 2.76 18.3 32.0 4.24 3.82 22.8 37.7 2.16 3.22 24.7 44.6 7.25 4.75 29.1 49.4 3.51
LOMO 3.64 23.2 37.3 4.53 4.70 28.3 43.1 2.28 5.75 34.4 54.9 10.2 7.36 40.4 60.4 5.64
Two-Stream 11.7 48.0 65.5 12.9 16.4 58.4 74.5 8.03 15.6 61.2 81.1 21.5 22.5 72.3 88.7 14.0
One-Stream 12.1 49.7 66.8 13.7 16.3 58.2 75.1 8.59 17.0 63.6 82.1 23.0 22.7 71.8 87.9 15.1
Zero-Padding 14.8 52.2 71.4 16.0 19.2 61.4 78.5 10.9 20.6 68.4 85.8 27.0 24.5 75.9 91.4 18.7
BCTR 16.2 54.9 71.5 19.2 – – – – – – – – – – – –
BDTR 17.1 55.5 72.0 19.7 – – – – – – – – – – – –
D-HSME 20.7 62.8 78.0 23.2 – – – – – – – – – – – –
cmGAN 27.0 67.5 80.6 27.8 31.5 72.7 85.0 22.3 31.7 77.2 89.2 42.2 37.0 80.9 92.3 32.8
D2RL 28.9 70.6 82.4 29.2 – – – – – – – – – – – –

Ours 43.4 81.3 90.5 38.0 49.7 87.0 94.2 30.0 46.8 88.2 94.7 54.7 57.8 92.1 97.1 44.3

Evaluation Protocols. The Cumulative Matching Characteristic
(CMC) and mean average precision (mAP) are used as evaluation
metrics. Following Wu et al. (2017), the results of SYSU-MM01
are evaluated with official code based on the average of 10 times
repeated random split of gallery and probe set. Following Ye et al.
(2018a, 2018b), the results of RegDB are based on the average of
10 times repeated random split of training and testing sets.

4.2. Implementation details

In generation module G, following Radford, Metz, and Chin-
tala (2016), we construct our modality-specific encoders with 2
strided convolutional layers followed by a global average pooling
layer and a fully connected layer. For decoders, following (Wang,
Liang, Zhang, Yeung, & Xing, 2017), we use 4 residual blocks
with Adaptive Instance Normalization (AdaIN) and 2 upsampling
with convolutional layers. Here, the parameters of AdaIN are
dynamically generated by the modality-specific features. In GAN
loss, we use discriminator and LSGAN as in Mao, et al. (2016) to
stable the training.

In feature learning module F , for a fair comparison, we adopt
the ResNet-50 (He, Zhang, Ren, & Sun, 2016) pre-trained with Im-
ageNet (Russakovsky, et al., 2015) as our CNN backbone. Specifi-
cally, we use the first two layers of the ResNet-50 as our set-level
encoder Esl, and use the remaining layers as our instance-level
encoder E il. For the classification loss, the classifier C takes the
feature vectors V as inputs, followed by a batch normalization, a
fully-connected layer and a soft-max layer to predict the inputs’
labels.

We implement our model with open-source deep learning
framework Pytorch The training images are resized to 256 × 128
and augmented with horizontal flip. The batch size is set to
128 (16 person, 4 RGB images and 4 IR images). We optimize
our framework using Adam with learning rate 0.0002 and betas
[0.5, 0.999]. The generation module is first pre-trained for 100
epochs. Then the overall framework is jointly optimized for 50
epochs, where the learning rate is decayed to its 0.1 at 30 epochs.

4.3. Comparison with state-of-the-arts

Results on SYSU-MM01 Datasets We compare our model
with 10 methods including hand-crafted features (HOG Dalal &
Triggs, 2005, LOMO Liao et al., 2015), feature learning with the
classification loss (One-Stream, Two-Stream, Zero-Padding) (Wu
et al., 2017), feature learning with both classification and rank-
ing losses (BCTR, BDTR) (Ye et al., 2018a), metric learning (D-
HSME Hao et al., 2019), and reducing distribution divergence of
features (cmGAN Dai et al., 2018, D2RL Wang et al., 2019a). The
experimental results are shown in Table 1.

Table 2
Comparison with state-of-the-arts on the RegDB dataset under different query
settings. thermal2visible means use thermal images as query and visible images
as gallery, vice versa. mAP denotes mean average precision scores (%).
Methods thermal2visible visible2thermal

Rank-1 mAP Rank-1 mAP

Zero-Padding 16.7 17.9 17.8 31.9
TONE 21.7 22.3 24.4 20.1
BCTR – – 32.7 31.0
BDTR 32.8 31.2 33.5 31.9
D2RL 43.4 44.1 43.4 44.1

Ours 51.3 52.0 52.1 51.9

Firstly, LOMO only achieves 3.64% and 4.53% in terms of Rank-
1 and mAP scores, respectively, which shows that hand-crafted
features cannot be generalized to the RGB–IR Re-ID task. Sec-
ondly, One-Stream, Two-Stream and Zero-Padding significantly
outperform hand-crafted features by at least 8% and 8.3% in terms
of Rank-1 and mAP scores, respectively. This verifies that the
classification loss contributes to learning identity-discriminative
features. Thirdly, BCTR and BDTR further improve Zero-Padding
by 1.4% in terms of Rank-1 and by 3.2% in terms of mAP scores.
This shows that the ranking and classification losses are com-
plementary. Additionally, D-HSME outperforms BDTR by 3.6%
Rank-1 and 3.5% mAP scores, which demonstrates the effective-
ness of metric learning. In addition, D2RL outperform D-HSME by
8.1% Rank1 and 6.0% mAP scores, implying the effectiveness of
adversarial training. Finally, Our method outperforms the state-
of-the-art method by 9.2% and 7.7% in terms of Rank-1 and mAP
scores, showing the effectiveness of our model for the RGB–IR
Re-ID task.
Results on RegDB Dataset. We evaluate our model on RegDB
dataset and compare it with Zero-Padding (Wu et al., 2017),
TONE (Ye et al., 2018b), BCTR (Ye et al., 2018a), BDTR (Ye et al.,
2018b) and D2RL (Wang et al., 2019a). We adopt two settings,
i.e visible2thermal and thermal2visible modes. Here, the visi-
ble2thermal means that visible images are query set and thermal
images are gallery set, and so on. As shown in Table 2, our
model can significantly outperform the state-of-the-arts by 7.9%
and 8.7% in terms of Rank-1 scores with thermal2visible and
visible2thermal modes, respectively. Overall, the results verify the
effectiveness of our model.

4.4. Model analysis

Ablation Study. To further analyze effectiveness of the set-
level alignment (SL) the instance-level alignment (IL), paired-
images of unseen IDs (UI) and feature learning with local regions
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Fig. 4. Distribution of cross-modality similarities of intra-person and inter-person. The instance-level alignment (IL) can enhance intra-person similarity while keep
inter-person similarity unchanged, which improves performance. Please note that w/ means with and w/o means without. Please see text for more details.

Table 3
Analysis of set-level (SL), instance-level (IL) alignment, feature learning with
local regions (LR) and paired-images of unseen IDs (UI). Please see text for more
details.
index SL IL LR UI R1 R10 R20 mAP

1 × × × × 32.1 75.7 87.0 31.9
2 ✓ × × × 35.1 78.6 88.2 33.8
3 × ✓ × × 36.0 79.8 89.0 35.5
4 ✓ ✓ × × 38.1 80.7 89.9 36.9
5 ✓ ✓ ✓ × 40.5 82.2 90.5 38.3
6 ✓ ✓ ✓ ✓ 43.2 83.5 91.1 39.9

7 – ✓ ✓ ✓ 40.0 81.9 90.0 37.5
8 ✓ ✓ – ✓ 41.9 82.5 91.1 38.9

(LR), we evaluate our method under 6 different settings. Specifi-
cally, when removing set-level alignment (SL), we use separate
set-level encoder Esl, i.e. we do not share weights of set-level
encoder Esl with modality-invariant encoder E i. When removing
instance-level alignment (IL), learning with local regions (LR) or
paired-images of unseen IDs (UI), we set corresponding weights
in Eq. (16)λil, λlr or λui as 0. Moreover, to analyze whether the fea-
ture disentanglement strategy contributes to set-level alignment,
we use a degraded set-level encoder by do not sharing it weight
with modality-invariant encoder and train it with a GAN loss as
in Dai et al. (2018). To shows the importance of generated paired-
images for local region learning, we conduct a degraded version,
that is use original unpaired-images. Please note that symbol ×

means use no the module, − means using the degraded module,
and ✓represents using the module.

As shown in Table 3, when removing both SL and IL (index-
1), our method only achieve 32.1% Rank-1 score. By adding
SL (index-2) or IL (index-3), the performance is improved to
35.1% and 36.0% Rank-1 score, which demonstrate the effective-
ness of both SL and IL. When using both SL and IL (index-4),
our method achieves better performance at 38.1% Rank-1 score,
which demonstrates that SL and IL can be complementary with
each other. Further, when adding LR (index-5) and UI (index-
6), the Rank-1 score increases to 40.5% and 43.2%, showing the
effectiveness of LR and UI. Finally, when removing the disentan-
glement from set-level alignment (index-7), Rank-1 score drops

by 3.2%. This illustrates that disentanglement strategy is helpful
for learning set-level alignment. When using unpaired-images for
LR (index8), the performance also drop by 1.4% Rank-1 score. This
shows that paired-images are important local feature learning.

To better understand set-level alignment (SL) and instance-
level alignment (IL), we visualize the distribution of intra-person
similarity and inter-person similarity under different variants.
The similarity is calculated with cosine distance. Firstly, when
comparing with Fig. 4(a) and (b), we can find that even us-
ing no SL and IL, model can easily fit training set, while fails
to generalize to test set. As we can see in Fig. 4(b), the two
kind of similarities are seriously overlapped. This shows that the
cross-modality variation cannot be well reduced by simply fitting
identity information in training set. Secondly, in Fig. 4(c), we find
that although the similarity of intra-person becomes more con-
centrated, the similarity of inter-person also become larger. This
shows that SL imports some misalignment of instances which
may harm the performance. Finally, in Fig. 4(c) we can see that, IL
boosts intra-person similarity, meanwhile keeps the inter-person
similarity unchanged. This illustrate that the IL explicitly reduce
. In summary, experimental results and analysis above show the
importance and effectiveness of instance-level alignment.

Parameters Analysis. We evaluate the effect of the parame-
ters, they are weights in Eq. (16) including λil, λir , λul and local
region number n. As shown in Fig. 5, we analyze our method with
respect to the λalign on SYSU-MM01 dataset under single-shot&all-
search mode. We can see that, at most parameters, our method
can stably have an significant improvement. The experimental
results show that our method is robust to different parameters.

4.5. Analysis of generated images

In our framework, the generated cross-modality paired-images
play an important roles, and is necessary to be evaluated. Here,
we evaluate the synthetic images from real images (FRI) and
from latent space (FLS) with two evaluation protocols, i.e. mean
distance (MD) and Frechet Inception Distance (FID) (Heusel, Ram-
sauer, Unterthiner, Nessler, & Hochreiter, 2017). The former rep-
resents identity consistency with L2 distance of images in a pair,
the latter is distribution consistency between real and synthetic
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Fig. 5. Parameter analysis. λil , λir , λul are weights in Eq. (16), n is local region number in Eq. (12). Rank-1 score is evaluated on SYSU-MM01 under single-shot&all-search
mode.

Table 4
Identity and distribution consistency analysis of synthetic images from ours,
CycleGAN (Zhu et al., 2017), StarGAN (Choi, et al., 2018) and VAEs (Kingma
& Welling, 2014) on SYSU-MM01 dataset. FRI means synthesizing images from
real images, FLS from latent space. MD and FID are metrics for identity and
distribution consistency, respectively. Smaller is better. Please see text for more
details.
Methods MD(identity) FID(distribution)

FRI FLS FRI FLS

CycleGAN 0.52 × 9.9 ×

StarGAN 0.55 × 9.5 ×

VAE 0.64 0.69 9.6 8.9

Ours 0.41 0.56 7.5 8.2

images. For both items, smaller values means better consistency.
The experimental results are reported in Table 4.
Identity Consistency. Identity consistency is important for
instance-alignment. That is, where the synthetic paired-images
are the same person. As we can see in Table 4 (left-column),
when synthesizing images from real ones, VAEs performs worst,
followed by StarGAN and CycleGAN, and ours is best. The reason
is that ours utilize disentanglement strategy and overcome one-
to-multi difficulty. For images generated from latent space (FLS),
their FLS score is worse than that of FRI, this is because the
features are sampled from low-dimensional latent space, which
loses some details and lead to fuzzy images. Please see Figs. 6 and
7 for visualization of the images.
Distribution Consistency. Distribution consistency shows how
realistic a synthetic image is. As we can see in Table 4(right-
column), when generating images from real , FRI is Please note
that FRN performs worse then FRN. The reason is that the latter
sample images from a latent space, leading to fuzzy images. While
the former translate a real image to another style, which is more
easier.
Visualization of Synthetic Images FRI. We display the generated
cross-modality paired-images from ours, CycleGAN (Zhu et al.,

2017) and StarGAN (Choi, et al., 2018). From Fig. 6(a), we can
see that, images of a person in the two modalities are significant
different, even human beings cannot easily identify them. In
Fig. 6(b), our method can stably generate fake images when given
cross-modality unpaired-images from a person. For example, in
person A, ours can translate her IR images to RGB version with
right colors (yellow upper and black bottom clothes). However,
in Fig. 6(c) and (d), CycleGAN and StarGAN cannot learn the right
colors even poses. For example, person B should have blue upper
clothing. However, images generated by CycleGAN and StarGAN
are red and black, respectively. Those unsatisfying images cannot
be used to learn instance-level aligned features.
Visualization of Synthetic Images FLS. To better understand the
synthetic images of unseen classes, we display them in Fig. 7.
Specifically, the most left and right images are real ones, mid-
dle ones are generated by mixing corresponding real images
in the latent feature space. We can observe that the synthetic
images contain information of the two real images, e.g. color,
body type, clothes and so on. The preference can be continuously
and smoothly controlled by the parameter α. Those images are
realistic and unseen in original training set. Thus we can enlarge
the training set with those unseen class by mixing any two real
images with different parameter α.

5. Conclusion

In this paper, we propose a novel Joint Set-Level and Instance-
Level Alignment Re-ID (JSIA-ReID). On the one hand, our model
performs set-level alignment by disentangling modality-specific
and modality-invariant features. Compared with vanilla meth-
ods, ours can explicitly remove the modality-specific information
and significantly reduce the modality-gap. On the other hand,
given cross-modality unpaired images, we can generate cross-
modality paired-images by exchanging their features. With the
paired-images, instance-level variations can be reduced by min-
imizing the distances between every pair of images. To learn
fine-grained features, we perform instance-level alignment on
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Fig. 6. Visualization of synthetic cross-modality paired-images generated from real unpaired-ones. We compare ours with CycleGAN (Zhu et al., 2017) and
StarGAN (Choi, et al., 2018). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Visualization of synthetic images generated from the latent space. As we can see, our latent space is continuous and smooth. The synthetic images contain
characters of both images. The parameter α can control preference of the new image. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

using both global and local features. Considering that every image
in a pair contains absolutely the same content information such
as pose and view, the local-feature alignment does not import
extra noise. Besides, we can straightly synthesize cross-modality
paired images of unseen IDs from random noise. Those unseen
IDs can further enhance feature learning and achieve better gen-
eralization. Finally, together with re-id loss, our model can learn
both modality-aligned and identity-discriminative features. Ex-
perimental results on two datasets show the effectiveness of our
proposed method.
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